

KUNSTSTOFFFORMENSTAHL

FÜR HÖCHST VERSCHLEISS-BEANSPRUCHTE WERKZEUGE

IN FORM VON VIELSEITIGKEIT UND LEISTUNG

BÖHLER M398 MICROCLEAN ist ein pulvermetallurgisch hergestellter martensitischer Chromstahl. Aufgrund seiner Legierungskonzeption verfügt dieser Stahl über einen extrem hohen Verschleißwiderstand und guter Korrosionsbeständigkeit – die ideale Kombination für höchst verschleißbeständige Werkzeuge.

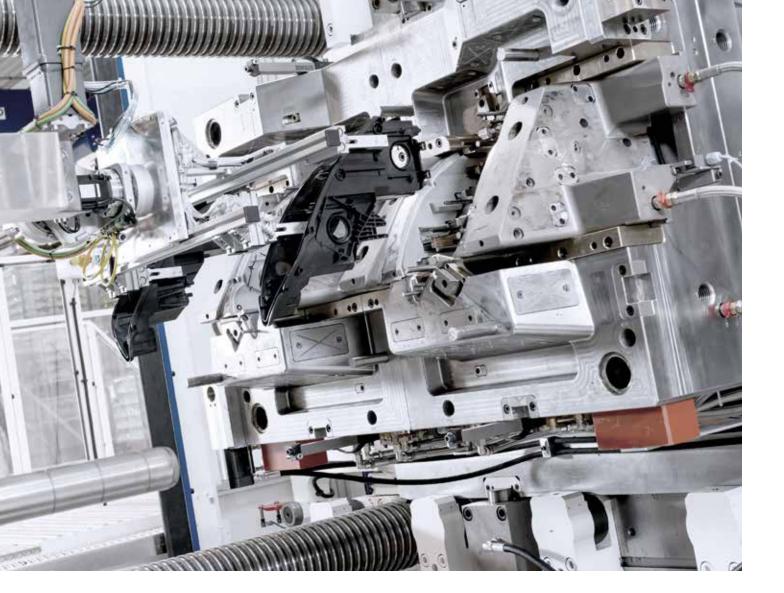
MARKTANFORDERUNGEN

Trends

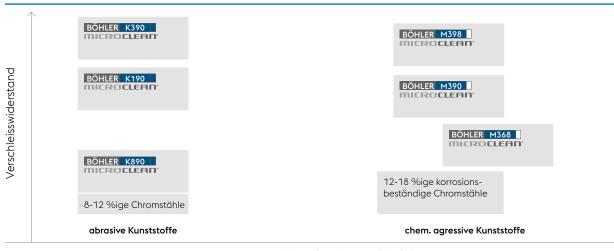
- » Verarbeitung von verstärkten Kunststoffen (Glasfaser, ...)
- » Steigende Schnecken-Geschwindigkeiten für gesteigerte Kapazitäten

 \downarrow

Auswirkungen


- » Klare Reduktion der Standzeit des Werkzeuges
- » Höhere Kosten für Ersatzteile und Wartung
- » Verringerte Qualität der Spritzgieß-Produkte

Ziel


 \downarrow

Neuer PM Kunststoffformenstahl mit folgenden Eigenschaften:

- » Extrem hohen Verschleißwiderstand
- » Erreichbare Härte > 60 HRc mittels Vakuum-Wärmebehandlung
- » Gute Korrosionsbeständigkeit

Eigenschaftsprofil von BÖHLER Werkzeugstählen für die kunststoffverarbeitende Industrie

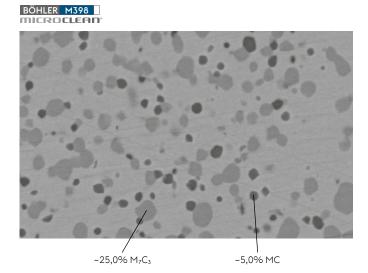
Korrosionsbeständigkeit *

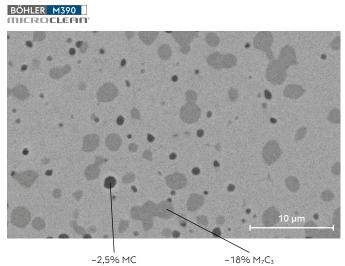
 $^{^\}star$ Hoch angelassen, Auslagerungstest: gemessen nach 24 h in 20 % siedender Essigsäure

VERBESSERTE EIGENSCHAFTEN

LEGIERUNGSKONZEPT

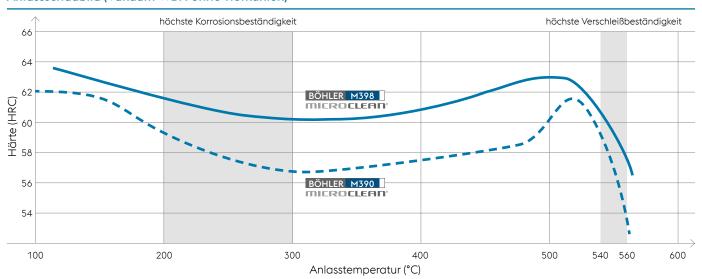
Steigerung der Makro-Härte durch Erhöhung des Primärkarbid-Gehaltes bestehend aus:


- » Vanadiumreiche MC-Karbide (VC ~ 3.000 HV))
- » Chromreiche M_7C_3 -Karbide ($Cr_7C_3 \sim 2.200 \text{ HV}$)

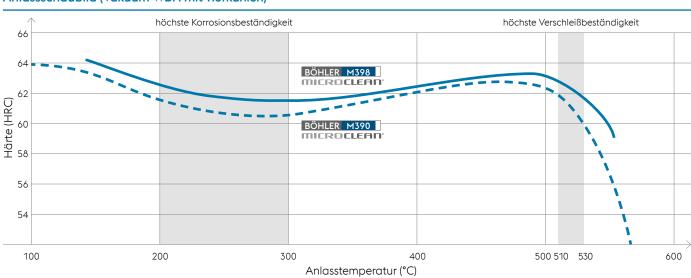

Vergleich der chemische Zusammensetzung in %

	С	Si	Mn	Cr	Мо	V	W
BÖHLER M390	1,90	0,70	0,30	20,00	1,00	4,00	0,60
BÖHLER M398 I	2,70	0,50	0,50	20,00	1,00	7,20	0,70

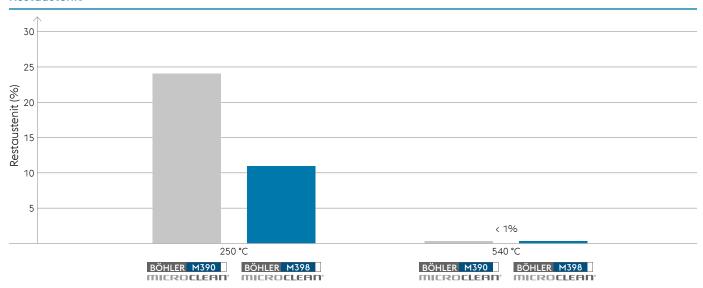
MIKROSTRUKTUR



→ Gesteigerter Primärkarbid-Gehalt auf ca. 30 Volums-%


MATERIAL-EIGENSCHAFTEN

Anlassschaubild (Vakuum-WBH ohne Tiefkühlen)


Wärmebehandlung: Austenitisierung bei 1150°C/20 min./5 bar; Anlassen 2x2 h

Anlassschaubild (Vakuum-WBH mit Tiefkühlen)

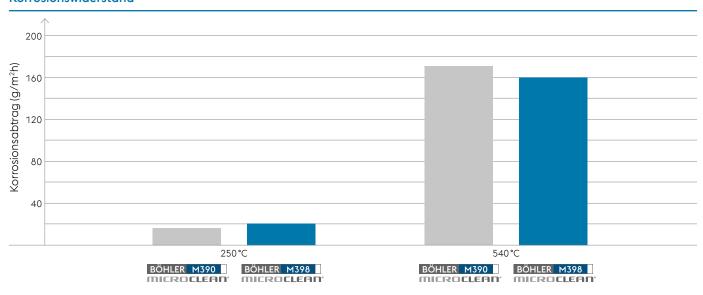
 $W\"{a}rmebehandlung: Austenitisierung bei 1150 °C/20 min./5 bar; Tiefk\"{u}hlen: -70 °C, 1 x 2 h; Anlassen 2 x 2 h; Anla$

Restaustenit

Wärmebehandlung: Austenitisierung bei $1150\,^{\circ}\text{C}/20\,\text{min.}/5\,\text{bar}$; ohne Tiefkühlen; Anlassen $2\times2\,\text{h}$

→ Ein geringer Gehalt an Restaustenit nach dem Härten und nieder Anlassen verbessert die Härtbarkeit des BÖHLER M398 MICROCLEAN, besonders dann wenn kein Tiefkühlen durchgeführt wird bzw. möglich ist

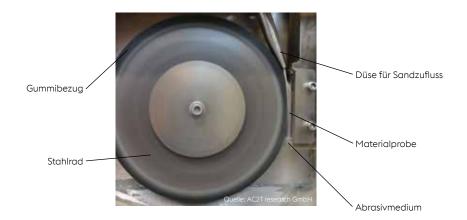
Schlagbiegeenergie



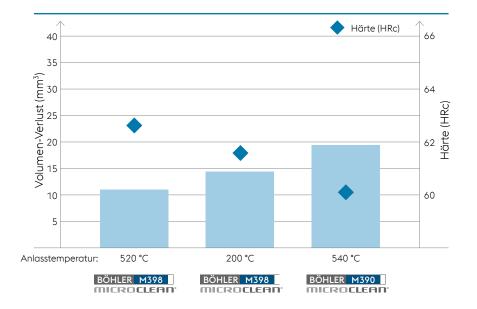
Wärmebehandlung: Austenitisierung bei $1150\,^{\circ}\text{C}/20\,\text{min.}/5\,\text{bar}$; ohne Tiefkühlen; Anlassen $2\times2\,\text{h}$ Getestete Abmessungen:

BÖHLER M390 MICROCLEAN: Rundstahl, längs, ca. 80 mm

BÖHLER M398 MICROCLEAN: Mutterblock, längs, ca. $373 \times 343\,\mathrm{mm}$


Korrosionswiderstand

Wärmebehandlung: Austenitisierung bei $1150\,^{\circ}\text{C}/20\,\text{min.}/5\,\text{bar}$; ohne Tiefkühlen; Anlassen $2\times2\,\text{h}$ Auslagerungstest: gemessen nach $24\,\text{h}$ in $20\,^{\circ}$ siedender Essigsäure


VERSCHLEISSWIDERSTAND

ASTM G65 Gummirad/Trockener Sand Abrasionstest

Prüf-Methode A				
Prüflast	130 N			
Sandkorn-Grösse	100 – 400 µm			
Fördermenge	340 g/min.			
Prüfdauer	30 min.			
Abriebsweg	4309 m			

→ Das durch Abrasion verursachte Verschleißvolumen wird aus dem Gewichtsverlust und der Dichte der Materialprobe berechnet

→ BÖHLER M398 MICROCLEAN zeigt den höchsten abrasiven Verschleißwiderstand

WIRTSCHAFTLICHE VORTEILE

EIGENSCHAFTEN

- » Extrem hoher Verschleißwiderstand
- » Hohe und isotrope Maßbeständigkeit bei der Wärmebehandlung
- » Hohe Härtbarkeit und Druckfestigkeit mit >60 HRc
- » Gute Zähigkeit
- » Gute Korrosionsbeständigkeit
- » Gute Schleifbarkeit
- » Hochglanzpolierbarkeit

ermöglicht

- » Hohe Lebensdauer der Werkzeuge, somit geringere Stillstandszeiten und Wartungskosten
- » Teile höchster Präzision
- » Reproduzierbare Werkzeug-Standzeiten

Vorteile

- » Produktivitätssteigerung
- » Geringere Stückkosten

ANWENDUNGEN

Aufgrund seines Eigenschaftsprofiles kann BÖHLER M398 MICROCLEAN für folgende Anwendungen verwendet werden:

- » Rückstromsperren
- » Schnecken für Spritzgießmaschinen
- » Werkzeugeinsätze beim Spritzgießen
- » Höchstverschleißfeste Komponenten
- » Schneidtypische Instrumente und Messer

BÖHLER M398 I

- » Durch den massiv gesteigerten Primärkarbidhaushalt von M398 MICROCLEAN (ca. 30 Vol.-%) wird die Härte, Verschleißbeständigkeit als auch die Druckfestigkeit deutlich angehoben.
- » Im Gegensatz dazu wird jedoch die Schlagarbeit, im Vergleich zu M390 MICROCLEAN, etwas verringert.
- » Ähnlicher Korrosionswiderstand.

BÖHLER Marke	Verschleisswiderstand	Zähigkeit	Korrosionswiderstand
BÖHLER M390 VS. BÖHLER M398 MICROCLERIN	+	_	=

WÄRMEBEHANDLUNGS-EMPFEHLUNGEN

Lieferzustand

» Weichgeglüht mit max. 330 HB

Härten

- » Austenitisierungstemperatur: 1.120 bis 1.180 °C
- » Haltedauer nach vollständiger Durchwärmung:
- 20 30 Minuten für Härtetemperatur 1.120 bis 1.150 °C
- 5 10 Minuten für Härtetemperatur 1.180 °C
- » Abschrecken: Öl, N₂

Erzielbare Härte

» 60 bis 63 HRc

Anlassen für höchste Korrosionsbeständigkeit

- » Tiefkühlen zur Umwandlung von Restaustenit
- » Langsames Erwärmen auf Anlasstemperatur
- » Verweildauer im Ofen 1 Stunde je 20 mm Werkstückdicke, jedoch mindestens 2 Stunden
- » Richtwerte für die erreichbare Härte nach dem Anlassen bitten wir dem Anlassschaubild zu entnehmen.
- » Anlassen: 200 bis 300 °C

Anlassen für höchste Verschleißbeständigkeit

- » Tiefkühlen bei Anforderungen an höchste Maßstabilität empfehlenswert
- » Eine Tiefkühlbehandlung unmittelbar nach dem Härten führt zu verbesserter Härteannahme bei Austenitisierungstemperaturen ≥ 1150 °C, (Gefahr von Spannungsrissen)
- » Langsames Erwärmen auf Anlasstemperatur
- » Verweildauer im Ofen 1 Stunde je 20 mm Werkstückdicke, jedoch mindestens 2 Stunden
- » Richtwerte für die erreichbare Härte nach dem Anlassen bitten wir dem Anlassschaubild zu entnehmen.
- » Dreimaliges Anlassen 20 °C über dem Sekundärhärtemaximum ist notwendig, um eine vollständige Restaustenitumwandlung zu erzielen.

ZAHLEN, FAKTEN UND DATEN

Physikalische Eigenschaften

Elastizitätsmodul bei	20 °C	231 x 10 ³ N/mm ²
Dichte bei	20 °C	7,46 kg/dm³
Wärmekapazität bei	20 °C	490 J/(kg.K)
Wärmeleitfähigkeit bei	20 °C	15,2 W/(m.K)

Für Anwendungen und Verarbeitungschritte, die in der Produktbeschreibung nicht ausdrücklich erwähnt sind, empfehlen wir **Rücksprache** zu halten.

Wärmeausdehnung zwischen 20 °C und ... °C

100 °C	200 °C	300 °C	400 °C	500 °C	
10,4	10,6	10,9	11,2	11,5	10 ⁻⁶ m/(m.K)

BEARBEITUNGSHINWEISE

Drehen mit Hartmetall

Schnitttiefe mm	0,5 - 2	1 - 4	4 - 8	über 8
Vorschub mm/U	0,1 - 0,3	0,2 - 0,4	0,3 - 0,8	0,5 - 1,5
Schnittgeschwindigkeit (m/min)	130 – 200	100 – 170	70 – 120	30 – 70
Empfohlene BÖHLERIT-Geometrie	FP, FMP, MM	MP, MRP, MM	MRP, BMRS	RP, BR, BRP
BÖHLERIT-Hartmetallsorte	LCP15T, BCM25T	LCP15T, LCP25T, BCM25T	LCP25T, LC240F, BCM40T	LC240F
ISO-Sorte	P15, M25	P15, P20, M25	P20, P30, M40	P30, P40

Wärmebehandlungszustand: weichgeglüht, Richtwerte

Drehen mit Schnellarbeitsstahl

Schnitttiefe mm	0,5	3	6		
Vorschub mm/U	0,1	0,4	0,8		
BÖHLER-/DIN-Sorte	\$700 / DIN \$10-4-3-10				
Schnittgeschwindigkeit v _c (m/min)					
Standzeit 60 min.	30 - 20	20 - 15	18 - 10		
Spanwinkel	14°	14°	14°		
Freiwinkel	8°	8°	8°		
Neigungswinkel	-4°	-4°	-4°		

Fräsen mit Hartmetall

Schnittgeschwindigkeit v₅ (m/min)	150 - 180	130 - 160	80 - 140
BOEHLERIT-Hartmetallsorte	BCH10M, BCM35M	BCH30M, BCM40M	BCM40M, BCP40M
ISO-Sorte	H10, M35	H30, M40	M40, P40
F _z Eckenfräsen 90° (mm)	0,1 - 0,25	0,1 - 0,25	0,1 - 0,3
F _z Planfräsen 45° (mm)	0,15 - 0,5	0,15 - 0,6	0,15 - 0,6
F _z High feed Bearbeitung (mm)	0,6 - 1,8	0,6 - 2,0	0,6 - 2,0

Bohren mit Hartmetall

Bohrerdurchmesser mm	3 – 8	8 – 20	20 - 40
Vorschub mm/U	0,02 - 0,05	0,05 - 0,12	0,12 - 0,18
BOEHLERIT/ISO-Hartmetallsorte	HB10 / K10		
Schnittgeschwindigkeit v _c (m/min)	50 - 35	50 - 35	50 - 35
Spitzenwinkel	115° - 120°	115° - 120°	115° - 120°
Freiwinkel	5°	5°	5°

Wärmebehandlungszustand: weichgeglüht, Richtwerte

Die Angaben in diesem Prospekt sind unverbindlich und gelten als nicht zugesagt; sie dienen vielmehr nur der allgemeinen Information. Diese Angaben sind nur dann verbindlich, wenn sie in einem mit uns abgeschlossenen Vertrag ausdrücklich zur Bedingung gemacht werden. Messdaten sind Laborwerte und können von Praxisanalysen abweichen. Bei der Herstellung unserer Produkte werden keine gesundheits- oder ozonschädigenden Substanzen verwendet.

voestalpine BÖHLER Edelstahl GmbH & Co KG

Mariazeller Straße 25 8605 Kapfenberg, Austria T. +43/3862/20-7181 F. +43/3862/20-7576 E. info@bohler-edelstahl.at www.voestalpine.com/bohler-edelstahl

